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Abbreviations

ACPA anticitrullinated protein antibodies
ADA adalimumab
Anti-TNF-a antitumor necrosis factor-alpha
ASCVD atherosclerotic CVD
bDMARDs biologic DMARDs
CEC cholesterol efflux capacity
CRP C-reactive protein
csDMARDs conventional sDMARDs
CVD cardiovascular disease
CZP certolizumab pegol
DAS disease activity score
DMARD disease-modifying antirheumatic drug
EAMs extra-articular manifestations
ESR erythrocyte sedimentation rate
ETN etanercept
GLM golimumab
HDL-C high-density lipoprotein cholesterol
HLA human leukocyte antigen
IFX infliximab
IL interleukin
IMT intima-media thickness
INF-γ interferon-γ
LDL low-density lipoprotein
LDL-C low-density lipoprotein cholesterol
LFN leflunomide
Lp(a) lipoprotein(a)
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MHC major histocompatibility complex
MI myocardial infarction
MMPs matrix metalloproteases
MTX methotrexate
NSAIDs nonsteroidal anti-inflammatory drugs
ox-LDL oxidized low-density lipoprotein
RA rheumatoid arthritis
RANKL receptor activator of nuclear factor KB ligand
RF rheumatoid factor
ROS reactive oxygen species
RTX rituximab
sDMARDs synthetic DMARDs
TC total cholesterol
TCZ tocilizumab
TG triglyceride
Th T helper
TNF tumor necrosis factor
tsDMARDs targeted sDMARDs
VEGF vascular endothelial growth factor

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease that is generally considered 
one of the world’s most common autoimmune diseases. Its prevalence is estimated at ap-
proximately 0.5%–1% in the adult population, and RA presents two to three times more com-
monly in women than in men (Alamanos, Voulgari, & Drosos, 2006; van der Woude & van der 
Helm-van Mil, 2018). The disease affects mainly the joints, and is characterized by persistent 
inflammation in the synovial tissues, which, if left untreated, can cause joint erosion and, 
subsequently, destruction of the underlying bone (Smolen et al., 2018). The progressing joint 
damage may lead patients to functional impairment and significant disability (Kapetanovic 
et al., 2015), with a high economic burden for both patients and community health services 
(Cooper, 2000; Hsieh et al., 2020).

Several autoantibodies can be detected in the serum of patients, among which are rheuma-
toid factor (RF), anticitrullinated protein antibodies (ACPA), and anticarbamylated protein 
antibodies. These autoantibodies may form immune complexes in the joint that contribute 
to the inflammatory process and lead to articular damage. RA patients can be subdivided as 
seropositive or seronegative, depending on the presence or absence of RF and ACPA (de Brito 
Rocha, Baldo, & Andrade, 2019).

The most common clinical feature of the disease is symmetrical polyarthritis that affects 
the small joints of hands and feet, early morning stiffness and, occasionally, constitutional 
symptoms. At present, no diagnostic criteria exist for RA, and disease diagnosis is based 
on a combination of clinical and laboratory features: joint involvement, serology (RA and 
anti-CCP), levels of acute-phase reactants, and the duration of the symptoms (Smolen et al., 
2018; Sparks, 2019). The newest classification criteria for RA may also help physicians to reach 
an accurate diagnosis (Aletaha et al., 2010).

Still, RA is a highly heterogeneous disease, and some patients may present extra-articular 
manifestations (EAMs) in other organs, such as the skin, lung, and heart (Das & Padhan, 
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2017). Patients are also at increased risk of developing comorbidities, among which cardio-
vascular disease (CVD) is the most critical (Crowson et al., 2013). Interestingly, when com-
pared to the general population, RA patients with active disease present reduced levels of 
total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipopro-
tein cholesterol (HDL-C). Thus, “dyslipidemia,” a traditional CVD risk factor and a critical 
player in RA patients’ atherosclerosis, is paradoxical (Myasoedova et  al., 2011). Moreover, 
some of the antirheumatic drugs used for RA alter patients “atherogenic lipid profile” and 
cause changes in lipid composition and function (Myasoedova, 2017).

Below, we review pathophysiologic mechanisms, clinical manifestations, and RA treat-
ment options. These sections will be followed by extensive review of RA comorbidities with 
the focus on CVD complications and lipid profile of RA patients. We will review in details 
mechanisms that are thought to contribute into paradoxical relation between RA patients’ 
lipid profile and CVD events. Finally, we will focus on the effects of pharmacological treat-
ments, dietary, and other lifestyle interventions on blood lipid profile of RA.

Pathophysiologic mechanisms in rheumatoid arthritis (RA)

The etiology of RA remains unknown, although recent evidence implicates epigenetic pro-
cesses and environmental factors such as dust, tobacco, and the microbiome, which act in 
genetically predisposed individuals (Kronzer & Davis 3rd, 2021). The initial genetic suscep-
tibility is mainly defined by human leukocyte antigen (HLA)-DR4 and -DR1, and hormonal 
factors (Alpizar-Rodriguez et al., 2017; Raychaudhuri et al., 2012). Emerging data also indi-
cate the critical role of mucosal surface exposed to a high bacterial antigens load, such as the 
periodontium, gut, and lung. These extra-articular surfaces, and not the synovium, may rep-
resent the initial place of autoimmune generation (Brusca, Abramson, & Scher, 2014). Studies 
show that infectious agents like Porphyromonas gingivalis, Aggregatibacter actinomycetemcomi-
tans, and Epstein-Barr virus can induce citrullination or deamination of peptides, a posttrans-
lational modification mediated by peptidylarginine deiminases, and substantially lead to the 
production of ACPAs and RF (Arvikar et al., 2021; Konig et al., 2016; Masuoka et al., 2018; 
Sakkas, Daoussis, Liossis, & Bogdanos, 2017; Wegner et al., 2010). Citrullinated peptides ac-
tivate major histocompatibility complex (MHC) class II-dependent T cells that help B cells to 
form more ACPA. The generation of antibodies causes immune-complexes formation, com-
plement activation, and further migration of macrophages into the synovial joint, which is the 
disease’s primary targeted tissue (Nevius, Cordeiro Gomes, & Pereira, 2016).

The hyperplastic synovium is the dominant RA feature due to the inflammation and the 
proliferation of fibroblast-like synoviocytes. The inflammatory infiltrate is composed of mac-
rophages, T cells, B cells, fibroblasts, and dendritic cells, which initiate and maintain the in-
flammation in both the synovium and synovial fluid through the production of cytokines 
like tumor necrosis factor (TNF)-a, interleukin (IL)-1, IL-6, and IL-17A (Guo et al., 2018; Tran, 
Lundy, & Fox, 2005), and other mediators like the receptor activator of nuclear factor KB 
ligand (RANKL) (Ridgley, Anderson, & Pratt, 2018; van Beers et  al., 2013). Finally, the in-
flammation and synovial proliferation cause migration of endothelial cells related to angio-
genesis, the release of matrix metalloproteases (MMPs), reactive oxygen species (ROS), and 
the activation of osteoclasts by the RANK/RANKL pathway, leading to articular destruction 
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(Burrage, Mix, & Brinckerhoff, 2006; Mirshafiey & Mohsenzadegan, 2008; Sato & Takayanagi, 
2006) (Fig. 1). All the above interplay among cells of the innate and adaptive immune system 
is crucial, and leads to chronic inflammatory joint disease. Still, RA may have systemic effects 
as cytokines released in the inflamed joints can also target other organs and tissues.

Articular and extra-articular manifestations of RA

RA can affect any joint, but usually targets the metacarpophalangeal, proximal interpha-
langeal, and metatarsophalangeal joints, as well as in the wrists and knees. Joint synovitis 
causes swelling, tenderness to palpation with morning stiffness, and may lead to motion 
impairment (Jeffery, 2014; Zhang et al., 2020).

However, RA is a multisystem disease, and patients with RA can present various extra- 
articular manifestations, either in the beginning or during the course of their disease (Conforti 
et al., 2021). Studies show that up to 40% of patients with established disease may present 

FIG.  1 Differential contribution of cells from the innate and adaptive immune system into RA: Genetic and 
environmental factors may predispose to the production of citrullinated peptides (1). Activation of dendritic cells, 
with the production of pro-inflammatory cytokines (2). T-cell activation leads to further production of cytokines (3). 
Activation of B-cells and the production of autoantibodies (4). The inflammatory cells invade the synovium with 
further production of cytokines and metalloproteinases, leading to joint destruction (5). IL-, interleukin-; INF-γ, 
interferon-γ; RANKL, receptor activator of nuclear factor KB ligand; TNFa, tumor necrosis factor a.
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extra-articular manifestations (Cimmino et al., 2000). Higher incidence of EAMs has been as-
sociated with high RF titers, anti-CCP, homozygous DRB1*04 subtype, and smoking (Nyhäll-
Wåhlin et al., 2009; Turesson, Jacobsson, Bergström, Truedsson, & Sturfelt, 2000; Turesson, 
O’Fallon, Crowson, Gabriel, & Matteson, 2003; Voskuyl et al., 1996; Weyand, Xie, & Goronzy, 
1992). Various manifestations have been observed in RA patients, including rheumatoid nod-
ules, vasculitis and, moreover, pulmonary, neurologic, cardiac, hematological, and cutaneous 
complications (Cojocaru, Cojocaru, Silosi, Vrabie, & Tanasescu, 2010; Metafratzi et al., 2007).

Rheumatoid arthritis treatment

Treatment for RA has evolved over the past 25 years, from providing only symptomatic re-
lief to a target strategy with therapeutic drugs that impact disease activity and slow structural 
joint damage (Cardiel, 2013; Drosos, Pelechas, & Voulgari, 2019; Drosos, Pelechas, & Voulgari, 
2020; Upchurch & Kay, 2012). Analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) 
are used as adjunctive therapy in RA treatment as they are fast-acting and ameliorate pain 
and stiffness symptoms. NSAIDs inhibit cyclooxygenase enzymes (COX-1 and COX-2) and 
restrain prostaglandins synthesis leading to reduced joint swelling and pain. Still, they do not 
retard joint destruction and therefore are not sufficient for the treatment of RA. Due to the re-
duction of prostaglandins production in the gastrointestinal mucosa, NSAIDs can cause gas-
trointestinal complications and compromise cardiovascular safety (Crofford, 2013; Grosser, 
Ricciotti, & FitzGerald, 2017).

Glucocorticoids (GCs) are useful for short periods during severe flares of disease activity 
or when the disease is not responding to NSAIDs. They prevent the release of phospholipids 
and decrease prostaglandins and cytokines’ actions, provoking a decrease in inflammation. 
However, they have serious side effects, especially when given in high doses for long periods, 
such as weight gain, eye cataract, risk of infection, muscle wasting, osteoporosis, and meta-
bolic syndrome (Caporali, Todoerti, Sakellariou, & Montecucco, 2013).

Disease-modifying antirheumatic drugs (DMARDs) are immunosuppressive and immu-
nomodulatory agents used to treat autoimmune diseases such as RA. They are classified as 
either synthetic DMARDs (sDMARDs) or biologic DMARDs (bDMARDs). sDMARDs are 
further divided into conventional sDMARDs (csDMARDs) that evolved empirically without 
a fully understood mechanism and targeted sDMARDs (tsDMARDs), designed to target a 
specific molecular target. csDMARDs include methotrexate (MTX), leflunomide (LFN), hy-
droxychloroquine (HCQ), and sulfasalazine, while tsDMARDs are presented by tofacitinib 
and baricitinib that both are Janus kinase (JAK) inhibitors. bDMARDs, which were first in-
troduced in the late 1990s, include anti-TNF-a agents, IL-6 inhibitors, B cell depletion agents, 
and inhibitors of T-cell costimulation (Fig. 2).

Currently, csDMARDs are widely used for the treatment of patients with RA (Kim, Yelin, 
Tonner, & Solomon, 2013; Sizova, 2008). MTX is the initial drug of choice of most rheumatol-
ogists (Padjen, Crnogaj, & Anić, 2020). Guidelines of the American College of Rheumatology 
(ACR) and the European League Against Rheumatism (EULAR) target early disease treat-
ment and suggest the use of DMARDs as soon as the diagnosis is completed (Singh et al., 
2016; Woodworth & den Broeder, 2015). Notably, the 2019 updated EULAR recommenda-
tions suggest using MTX combined with GCs for newly diagnosed patients. Upon insufficient 
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 response to this therapy within 3–6 months, further stratification is recommended according 
to risk factors. With poor prognostic factors (presence of autoantibodies, high disease activity, 
early erosions, or failure of two csDMARDs), any bDMARD or csDMARD could be added 
to the csDMARD. If this fails, any other bDMARD (from another or the same class) or tsD-
MARD is recommended. On sustained remission, DMARDs may be tapered but should not 
be stopped (Smolen et al., 2020).

Comorbidities in RA

The prevalence of comorbidities in RA varies between 40% and 66%, and studies show 
that they may shorten these patients’ life expectancy. Patients with RA present numerous co-
morbidities, mainly represented by pulmonary and CVD [myocardial infarction (MI), stroke], 
infections, cancer, osteoporosis, and depression (Luque Ramos et al., 2019). Still, comorbidi-
ties are associated with many factors including the use of GCs and prolonged DMARDs, the 
advanced age of patients, positive RF, and traditional risk factors, such as tobacco smoking 
(Dougados et al., 2014).

CVD: A major comorbidity in RA

Overall, RA patients have a shorter life expectancy: 3–10 years less when compared to the 
general population (Dadoun et al., 2013; Løppenthin et al., 2019). Notable, over 40% of all RA 
patients’ deaths are caused by CV events (ischemic heart disease, stroke) (Symmons & Gabriel, 
2011). Studies also show a 1.5-fold higher risk for heart attack, a 2-fold risk for heart failure, 
and an even higher risk of peripheral vascular disease in RA patients compared to the general 
population (Aviña-Zubieta et al., 2008; Chuang et al., 2016; Stamatelopoulos et al., 2010).

FIG. 2 Overview of DMARDs approved for the treatment of RA. DMARDs, disease-modifying antirheumatic drugs.
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Classical or traditional CVD risk factors for the general population are hypertension, age, 
cigarette smoking, dyslipidemia, family history, diabetes mellitus, obesity, and physical in-
activity (de Goma, Knowles, Angeli, Budoff, & Rader, 2012). However, these factors cannot 
fully explain the higher CVD risk observed in RA patients. Interestingly, increased C-reactive 
protein (CRP) levels have been shown to predict CVD in the general population (Osman, 
L’Allier, Elgharib, & Tardif, 2006). At the same time, in RA patients, a significant association 
is observed between CRP and erythrocyte sedimentation rate (ESR) with atherosclerosis, and 
a higher risk for MI and stroke (Gonzalez-Gay, Gonzalez-Juanatey, & Martin, 2005; Goodson 
et al., 2005; Zhang et al., 2014). On the other hand, a higher prevalence of preclinical athero-
sclerosis is found in RA patients independently of traditional risk factors, reinforcing the 
possible link between inflammation and disease severity to this population’s atherogenicity 
(Roman et al., 2006). Furthermore, increased coronary heart disease (CHD) and CHD mor-
tality are observed in autoantibody-positive RA patients, even in those who do not present 
any joint symptoms. These relate to the HLA-DRB1 shared epitope that is associated with a 
higher cardiovascular mortality rate in advance. Thus, the puzzle of CVD in RA seems to be 
far more complex, including both traditional CVD risk factors, such as insulin resistance, hy-
pertension, limited physical activity, and obesity, and nontraditional risk factors, that relate to 
RA such as uncontrolled systemic inflammation, autoantibodies, genetic factors, and altered 
lipid profile (Toms, Symmons, & Kitas, 2010) (Fig. 3).

CVD risk assessment in RA

Current advances in understanding the high CVD burden in RA patients have driven a 
significant adjustment of RA treatment guidelines. Thus, rheumatologists currently monitor 
disease activity and manage all possible CVD risk factors. This necessity is displayed in the 
treatment guidelines published by the European Society of Cardiology and the European 
Atherosclerosis Society (Mach et al., 2020). In 2017, EULAR recommendations for the screen-
ing and management of CVD risk in RA patients proposed a cardiovascular risk assessment 
for all patients with RA at least once every 5 years and whenever major antirheumatic therapy 
changes occur. When applying prediction models for CVD risk, a 1.5 multiplication factor 
should be adapted for all patients with RA, while screening with carotid ultrasound for as-
ymptomatic atherosclerotic plaques may be considered part of the CVD risk evaluation. In 
addition, TC and HDL-C should be used as part of the CVD risk assessment and ideally be 
measured when disease activity is stable or in remission. In turn, the TC/HDL-C ratio is con-
sidered a better CVD risk predictor than the individual lipid components (Agca et al., 2017).

CVD and atherosclerosis in RA

Atherosclerotic cardiovascular events (ASCVE) are related to atherosclerotic plaque for-
mation, where cumulative plaques narrow and block blood arteries. Atherosclerosis is an 
inflammatory process provoked by many mediators, which are also associated with inflam-
matory activity in RA (Cinoku, Mavragani, & Moutsopoulos, 2020; Gonzalez-Gay et  al., 
2005; Sattar, McCarey, Capell, & McInnes, 2003). A pro-inflammatory state, oxidative stress, 
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 hyperhomocysteinemia, and insulin resistance are commonly observed in RA and athero-
genic conditions (Pelechas, Voulgari, & Drosos, 2021; Sattar & McInnes, 2005). A potential 
mechanism explaining the interplay of RA and atherosclerosis involves the production of 
pro-inflammatory cytokines, such as TNF-a, IL-1, and IL-6 by the synovium that are released 
into the systemic circulation. Through several pathways, these cytokines cause changes in 
specific organs like skeletal muscles, adipose tissues, liver, and vascular endothelium and 
lead to insulin resistance, dyslipidemia, prothrombotic procedures, and finally, endothelial 
dysfunction (Fig. 4).

FIG. 3 Puzzle of CVD risk in RA. Genetic and environmental factors predispose to RA development (1). In RA 
patients, inflammation and autoantibodies may lead to dyslipidemia, insulin resistance and fat deposition (2) and 
extra- articular manifestations and physical inactivity (3). The use of NSAIDs may cause hypertension along with other 
traditional CVD risk factors (4). All of the above dynamically interact with each other and form the cardiovascular 
risk in RA patients. ACPA, anticitrullinated protein antibodies; CRP, C-reactive protein; CVD, cardiovascular disease; 
IL-, interleukin-; NSAID, nonsteroidal anti-inflammatory drug; RF, rheumatoid factor; TNFa, tumor necrosis factor a.
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This process is dynamic, and during each step inflammatory cytokines facilitate the accu-
mulation of lipids in the subendothelial space, making the atherosclerotic process a chronic 
inflammatory disease. Following endothelial cell injury, the observed accumulation and 
oxidation of LDL to oxidized LDL (ox-LDL) constitutes the first step of atherosclerosis that 
drives macrophages transformation into foam cells and ultimately leads to the production of 
a fibrous cap, which contains smooth muscle cells and stabilizes the plaque. The stable plaque 
is a barrier that prevents plaque rupture. In contrast, when the foam cell core is highly inflam-
matory, the plaque becomes vulnerable and may lead to exposure of lesion prothrombotic 
factors to blood, thrombus formation, and clinical events (Li et al., 2021).

High blood cholesterol eventually begins to accumulate in arteries and contribute to ath-
erosclerotic plaque formation. Elevated levels of LDL-C and apolipoprotein B (apo B), the 

FIG. 4 Pathways linking RA to atherosclerosis: Environmental and genetic factors contribute to endothelial dys-
function (1). In RA, genetic variants and environmental factors trigger pathological immune response and expression 
of pro-inflammatory cytokines in the synovium (2). These cytokines act directly over the endothelium (3) and pro-
voke the release of further inflammatory mediators like CRP and fibrinogen from the liver (4). They further contrib-
ute to several changes observed in adipose tissues (5) and skeletal muscles (6) leading to altered lipid profiles and 
insulin resistance. The interaction of all these events causes an activation of the endothelium and the progression of 
atherosclerosis. CRP, C-reactive protein; IL-, interleukin-; TNFa, tumor necrosis factor a.
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main structural protein of LDL, are directly associated with the risk for ASCVE, where LDL-C 
levels and ASCVE present a log-linear relationship (Feingold et al., 2000; Ference et al., 2017). 
Thus, studies show that lower LDL-C levels are associated with a much lower risk of CVD 
and vice versa, while high HDL-C levels in the blood have been related to a lower risk for 
heart disease and stroke (Després, Lemieux, Dagenais, Cantin, & Lamarche, 2000; Parhofer, 
2015). Still, raising only plasma HDL-C is unlikely to reduce the risk of Atherosclerotic CVD 
(ASCVD) events. Finally, increased risk of ASCVD has been associated with high triglycerides 
(TG) levels, especially in combination with HDL-C low levels (Peng, Luo, Ruan, Peng, & Li, 
2017) and higher plasma Lp(a) lipoprotein concentrations. Studies have unveiled Lp(a) as 
an independent contributing factor to the risk of atherosclerosis (Rosengren, Wilhelmsen, 
Eriksson, Risberg, & Wedel, 1990). Still, if Lp(a) blood levels are extremely high, an underly-
ing inherited lipid disorder cannot be excluded (Wu et al., 2019).

Regarding RA, the Apolipoprotein MOrtality RISk (AMORIS) study showed that even 
though TC and TG levels were significantly lower in patients with RA, these patients had 
a 1.6 times higher rate of acute MI and stroke than people without RA (Semb et al., 2010). 
Still, the predictive value of TC and TG in RA was not consistent. The relationship between 
dyslipidemia in RA and CVD events was reported a few years earlier by Myasoedova et al. 
(2011). This study revealed a higher risk of CVD events in RA patients with the lowest LDL-C 
(i.e., < 70 mg/dL) than those with higher LDL-C levels. Thus, patients with the lowest LDL-C 
levels present a higher CVD risk than those with moderate LDL-C levels in a qualitative 
U-shaped relationship, which deviates from the typical link between high LDL-C levels and 
high CVD risk (Liao, Liu, Lu, Solomon, & Kim, 2015; Robertson, Peters, McInnes, & Sattar, 
2013). Moreover, a reduction in HDL-C level in RA patients results in a high atherogenic TC/
HDL-C ratio index.

Lipid profile in RA patients

In the general population, an atherogenic lipid profile consists of high TC, high LDL-C, 
and low HDL-C. On the contrary, RA patients with active disease present low TC, LDL-C, and 
HDL-C levels. Thus, dyslipidemia in RA is considered paradoxical, and thus frequently de-
scribed in the literature as a “lipid paradox” (Venetsanopoulou, Pelechas, Voulgari, & Drosos, 
2020). The prevalence of dyslipidemia is notably higher in RA patients and in some studies 
reaches up to 65.3% of patients (Akiyama et al., 2015; Dormohammadi Toosi et al., 2018; Haye 
Salinas et al., 2013). Reduction in TC and LDL-C can be observed even 5 years before RA di-
agnosis. However, this altered lipid profile is characteristic not only in early RA but also in 
patients with established disease (Curtis, John, & Baser, 2012; Kavanaugh, 1994).

Accumulating evidence suggests that the pro- or antiatherogenic properties of LDL-C and 
HDL-C depend on their particle size and plasma concentration. Small-sized LDL and HDL 
particles play a role in the atheroma, and their analysis may contribute to CVD risk assess-
ment. Data from RA patients show an alteration in the concentrations of specific lipid subfrac-
tions: small HDL, HDL-2, and HDL-3 particles are reported to have lower counts compared 
with control subjects (Arts et al., 2012; Hurt-Camejo et al., 2001).

Moreover, apo B, which is an essential component of the very low-density lipoprotein 
(VLDL), intermediate-density lipoprotein (IDL), and LDL, is found in higher amount and in 
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association to carotid plaque progression (Ajeganova et al., 2011). A higher ratio of apo B to 
apo A is a better predictor of future CVD events than standard lipid concentrations among RA 
patients (Öhman, Öhman, & Wållberg-Jonsson, 2014). Thus, although TC and LDL-C levels 
may be lower in RA patients, alteration in the concentrations of specific lipid subfractions, 
higher apolipoprotein levels, and lower HDL-C levels may drive pro-atherogenic dyslipid-
emia in RA.

Mechanisms related to dyslipidemia in RA

The exact underlying mechanism for the altered lipid profile in RA remains unknown. 
Studies show that RA patients’ lipoproteins, except for concentration differences, present dys-
functional properties associated with a high incidence of CVD events in RA. These primarily 
relate to qualitative aspects of lipids, especially to HDL, which loses its antiatherogenic func-
tion and finally becomes proatherogenic.

Lipid concentration and inflammatory markers

Current knowledge indicates that lipid concentrations in RA highly relate to the patient’s 
inflammatory status. Following this premise, the correlation between lipid levels and inflam-
matory markers in RA is found to be inversed (Ridker et al., 2009). Interestingly, changes in 
lipid levels are more closely associated with CRP changes than with the disease activity score 
for RA (DAS28), a composite measure of RA disease activity that includes objective and sub-
jective criteria for the disease assessment. A decrease in CRP by at least 10 mg/L over 2 years 
is associated with a rise in LDL and an increase of HDL cholesterol efflux capacity (CEC) 
from lipid-laden plaques (Liao et al., 2015), even though it has been described that HDL-C 
levels remain relatively stable with changes in inflammation (Van Lenten, Reddy, Navab, & 
Fogelman, 2006). High inflammation correlates with high CRP in RA patients, which also 
relates to both lipid paradox and increased CVD risk (Sattar et al., 2003).

Atherosclerosis and inflammation

It is widely accepted that inflammation plays a crucial role in all stages of atherosclerosis 
development in RA patients. Carotid ultrasound is an easily used imaging tool to assess ath-
erosclerosis by measuring carotid intima‐media thickness (IMT). Carotid IMT detects early 
atherosclerosis and predicts ASCVE in the general population (Tschiderer, Klingenschmid, 
Seekircher, & Willeit, 2020). Increased carotid IMT is present in RA patients, even from the 
early stages of the disease, and relates to accelerated atherosclerosis. A more severe inflam-
matory status (as expressed by high DAS28, CRP, and ESR) significantly impacts carotid 
IMT (Hannawi, Haluska, Marwick, & Thomas, 2007; Targońska-Stepniak, Drelich-Zbroja, 
& Majdan, 2011). Also, RA patients present a significant association between inflammatory 
markers with atherosclerosis and, as mentioned previously in the text between CRP and ESR, 
all leading to a higher risk for MI and stroke (Libby, 2021; Zhang et al., 2014).
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Lipid metabolism and inflammation

Lipid metabolism is a complex process highly influenced by chronic inflammatory condi-
tions. In RA, pro-inflammatory cytokines from the synovial membrane leak into the systemic 
circulation, interact with mediators in distant organs, and finally lead to significant lipid me-
tabolism effects. This interplay includes tissues such as adipose, liver, and vascular endothe-
lium. Specific pro-inflammatory cytokines, such as IL-1 and IL-6, and TNF-a, are linked to 
increased cholesterol catabolism.

The impact of cytokines on LDL

TNF-a and IL-6 reduce circulating LDL-C levels by increasing LDL-receptor and scav-
enger B1 receptor on hepatocytes and further promoting LDL-C uptake by the liver and 
cholesterol secretion into the bile (Hashizume & Mihara, 2012; Venetsanopoulou, Pelechas, 
et al., 2020). Metabolic clearance of radiolabeled lipids has been measured using the frac-
tional catabolic rate (FCR) (Magkos & Mittendorfer, 2009). Two studies used this metric to 
examine the role of each of two different DMARDs, tofacitinib and tocilizumab (TCZ), in RA 
patients’ lipid profile. In the tofacitinib study, RA patients had a higher cholesterol ester FCR 
at baseline than controls, which explains the lower TC levels in these patients. Following 
tofacitinib treatment at a dose of 5 mg twice daily for 6 weeks, the FCR for the cholesterol es-
ters decreased, while cholesterol levels increased (Charles-Schoeman et al., 2015). In the TCZ 
study, the investigators measured the LDL-C FCR before and after 10 weeks of TCZ 8 mg/
kg intravenous treatment. At baseline, RA patients with active disease had an LDL-C FCR 
in a hypercatabolic range that pointed out a markedly active turnover. After treatment with 
TCZ, FCR decreased, reaching levels similar to those observed in the general population 
(Robertson et al., 2017).

Lipid peroxidation

Lipid peroxidation is another mechanism potentially leading to reduced LDL-C levels. 
When lipids oxidize due to oxidative stress, they become dysfunctional and may decompose, 
causing the formation of several unstable, small reactive molecules that can react with pro-
teins and change their function (Desai, Manjunath, Kadi, Chetana, & Vanishree, 2010). Thus, 
levels of malondialdehyde (MDA), one of the final products of polyunsaturated fatty acids 
peroxidation in the cells, have been significantly higher in RA patients’ blood, plasma, serum, 
synovial fluid, erythrocytes, and urine. MDA levels have also been positively correlated with 
disease activity and levels of ROS (Datta et al., 2014; Tsikas, 2017). Thus, cytokines that pro-
voke superoxide secretion from monocytes and endothelial cells are also responsible for LDL 
oxidative modification. High levels of ox-LDL and autoantibodies against ox-LDL have been 
featured in patients with early RA, suggesting an essential role of these parameters in the 
pathophysiology of RA and the accelerated atherosclerosis observed in these patients (Kim 
et al., 2004; Lourida et al., 2007).
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Altered HDL function and structure

HDL is commonly known as the “good” cholesterol as its high levels are associated with 
reduced CVD levels. Studies have shown that HDL participates in reverse cholesterol trans-
port, a process responsible for transferring excess cholesterol from peripheral sites to the liver 
(Venetsanopoulou, Pelechas, et al., 2020). Its ability to accept cholesterol from macrophages 
through the function of CEC is one of the most well-recognized pathways underlying HDL’s 
antiatherogenic nature. CEC is inversely associated in population studies, independently of 
HDL-C levels, with carotid IMT and a higher incidence of CVD events (Hunjadi et al., 2020; 
Rohatgi et al., 2014). In RA patients, CEC is impaired (Ronda et al., 2014), but the epidemio-
logical data are inconsistent, as not all the studies have shown that the CEC is significantly 
lower in RA patients than in healthy individuals (Ormseth et al., 2016). Either way, in RA 
patients, CEC is independently associated with subclinical carotid atherosclerosis (Tejera-
Segura et al., 2017).

Furthermore, studies indicate that a higher proportion of RA patients have low HDL anti-
oxidant capacity (Gómez Rosso et al., 2014; McMahon et al., 2006). HDL’s antioxidant activity 
inhibits the oxidation of both LDL and HDL itself, a process that is directly involved in the 
initial phases of arteriosclerosis. Specific qualitative characteristics of the HDL particle in-
fluence HDL’s antioxidant capacity (Ormseth & Stein, 2016). Thus, levels of paraoxonase-1 
(PON-1), an antioxidant enzyme produced in the liver and circulating with HDL, are lower 
in RA than in controls (Tanimoto et al., 2003). A wide range of other structural changes lead 
to a dysfunctional HDL (Gómez Rosso et al., 2014), which thus becomes pro-inflammatory. 
HDL is characterized by a decrease in antioxidant factors and a gain of pro-inflammatory pro-
teins. Acute-phase proteins identified in the HDL complexes are significantly increased in RA 
patients with pro-inflammatory HDL. These proteins include apolipoprotein J, fibrinogen, 
haptoglobin, serum amyloid A, and complement factors (B, C3, C9) (Watanabe et al., 2012).

Effects of antirheumatic therapy on serum lipid levels

Early disease diagnosis and applying a target-focused treatment strategy may prevent 
joint damage and lead patients to better long-term results. Following the introduction of new 
biological agents, studies on their safety and efficacy led to the identification and better un-
derstanding of pathways that link RA to an increased CVD risk. Besides reducing the inflam-
matory process, RA treatment may also increase TC, LDL-C, and HDL-C levels (Fomicheva 
et al., 2021). The following sections describe the available evidence of the effect of currently 
used drugs on the lipid profile of RA patients.

Glucocorticoids (GCs)

GCs present a wide range of biological activities, including anti-inflammatory and im-
munosuppressive effects (Hardy, Raza, & Cooper, 2020). One of their main actions includes 
their impact on the production of arachidonic acid metabolites. They also interfere with 
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 macrophages and fibroblasts’ function, inhibit the release of cytokines, and further influence 
lymphocytes’ action and the proliferation and activation of T cells. However, they are re-
lated to many adverse effects, including hypertension and carotid plaque formation (Davis 
3rd et al., 2007). A meta-analysis of 236,525 RA patients reported a 47% increased risk for all 
cardiovascular events and an elevated risk for MI, congestive heart failure, and stroke with 
prednisone use (Roubille et al., 2015).

Regarding lipid concentrations, low-dose corticosteroid therapy in RA patients is associ-
ated with an increase in HDL-C without increasing LDL-C or TGs (García-Gómez et al., 2008). 
In some patients, however, TC is found higher upon treatment with prednisolone (Hafström 
et al., 2007). A higher dose of GCs (prednisone ≥ 7.5 mg/day) has been associated with an 
increased HDL-C but no change in LDL-C or TC/HDL-C ratio (Schroeder, Tang, Wasko, & 
Bili, 2015). These results suggest that GC dose is not associated with an atherogenic lipid 
profile in RA. Although GC-induced elevations in HDL-C would appear to be protective, GC 
treatment adversely affects traditional CV risk factors, including glucose metabolism, blood 
pressure, and body weight. GC treatment also furthers endothelial dysfunction, which leads 
to atherosclerosis (Iuchi et al., 2003).

DMARDs

Treatment with cDMARDs helps RA patients achieve clinical remission, less structural 
damage and better functional outcomes. The above results from a significant suppression of 
inflammation, which also reduces the development of atherosclerosis and subsequently CVD 
(van Halm, Nurmohamed, Twisk, Dijkmans, & Voskuyl, 2006). The effect of csDMARDs on 
RA lipid profile has been studied thoroughly as detailed below.

HCQ, which is a 4-aminoquinolone, is a drug initially used to treat malaria. It is widely 
used for treating rheumatic disorders, especially in immune-mediated cases such as systemic 
lupus erythematosus and RA. HCQ improves synovitis, pain, and physical disability in RA, 
although it has no protective result on radiographic progression (The HERA Study Group, 
1995). The exact mechanism of action of HCQ is not fully understood. Still, HCQ has been 
shown to interfere with lysosomal activity and autophagy and to decrease T cells’ stimula-
tion and granulocyte migration, thus inhibiting cytokine production, and downregulating 
the whole autoimmune response (Nirk, Reggiori, & Mauthe, 2020). HCQ use has a potential 
benefit on the atherogenic lipid profile in patients with RA. A study by Morris et al. that an-
alyzed a cohort of 706 patients with an RA median duration of 1.98-year found a decrease in 
LDL-C, TC, LDL-C/HDL-C, and TC/HDL-C with HCQ use (Morris et al., 2011). Changes in 
lipid profile have been reported very early after the initiation of HCQ (Rahman et al., 1999). 
An increase of 15% in HDL-C has been reported in a prospective randomized clinical trial of 
12 months’ duration in 100 RA patients compared to a 12% decrease in patients treated with 
gold (p = 0.006) (Munro et al., 1997). The mechanism underlying this effect is uncertain. Still, 
it is unlikely mediated by solely controlling inflammation. It seems that HCQ influences the 
metabolism of lipids. Chloroquine, an antimalarian agent structurally related to HCQ, acts on 
isolated hepatocytes inhibiting cholesterogenesis (Beynen, van der Molen, & Geelen, 1981).

MTX is a folate analog that inhibits dihydrofolate reductase and thus blocks the folate- 
dependent steps in de novo purine and pyrimidine biosynthesis. Its mechanism of action is 
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complex: it includes inhibition of purine and pyrimidine synthesis, suppression of transmeth-
ylation reactions, reduction of antigen-dependent T-cell proliferation, and promotion of ade-
nosine release with adenosine-mediated suppression of inflammation (Cronstein, 1997). MTX 
currently is the anchor drug and the first-line treatment after RA diagnosis. In a meta-analysis 
that included 28 studies ofRA, a beneficial association between MTX and reduction in the risk 
of all CV events, including MI, was found when compared with other synthetic DMARDs 
(Roubille et al., 2015). The mechanism underlying the atheroprotective effect of MTX may re-
late to its capacity to activate adenosine A2A receptor and promote reverse cholesterol trans-
port, while limiting foam cell formation in THP-1 macrophages (Reiss et al., 2008).

In early RA cases, 1 year of treatment with a steady dose of MTX in combination with pred-
nisolone promotes elevations in TC, and HDL-C levels, although the TC/HDL-C ratio may 
decline (Georgiadis et al., 2006). The same researchers also observed a strong inverse rela-
tionship between CRP and HDL-C levels, with no change in serum LDL-C levels (Georgiadis 
et al., 2008). Navarro-Millàn et al., after 24-week MTX treatment in 226 patients with RA, ob-
served an increase in TC (+ 30%), LDL-C (+ 28%), and HDL-C (+ 39%) concentrations. Similar 
changes were reported with a combination of MTX and etanercept (n = 155) or with triple 
therapy of MTX, sulfasalazine and HCQ (n = 78) (Navarro-Millán et al., 2013). Additionally, 
it was found, using MTX monotherapy, that such changes on lipid profile were smaller af-
ter a 2-year follow-up (Charles-Schoeman et al., 2016). In contrast to previous reports, other 
studies have not shown any significant modification of lipid concentrations with MTX use 
whether as monotherapy or in combination with other csDMARDs or bDMARDs (Ormseth, 
Yancey, Solus, et al., 2016; Rho, Oeser, Chung, Milne, & Stein, 2009).

LFN is an immunomodulatory drug that inhibits the mitochondrial enzyme dihydrooro-
tate dehydrogenase and thus the pyrimidine nucleotide de novo biosynthesis. Its primary 
mechanism of action includes the regulation of lymphocyte proliferation (Breedveld & Dayer, 
2000). Prolonged treatment with LFN appears to be associated with a reduced risk of CV 
disease (Naranjo et al., 2008). However, hypercholesterolemia has been described as adverse 
effect during LFN treatment (Laborde, Loeuille, & Chary-Valckenaere, 2004), and thus, lipid 
profile should be monitored during the follow-up.

Antitumor necrosis factor-alpha (anti-TNF-a) agents

Several anti-TNF-a agents have been approved for the treatment of RA: infliximab (IFX), 
etanercept (ETN), adalimumab (ADA), golimumab (GOL), and certolizumab pegol (CZP). 
These drugs provide clinical improvement in the signs and symptoms of patients with RA and 
inhibit progressive joint damage (Ma & Xu, 2013). Kiortsis et al. have shown that IFX treat-
ment may have beneficial effects on insulin sensitivity in the most insulin-resistant patients 
with RA (Kiortsis, Mavridis, Vasakos, Nikas, & Drosos, 2005). Short anti-TNF-a treatment 
has been associated with increased TC and HDL-C levels, which correlates with decreased 
disease activity but with no significant effect on the atherogenic index (Seriolo, Paolino, Sulli, 
Fasciolo, & Cutolo, 2006). An increase in serum LDL-C or apo B levels after treatment has also 
been described in patients treated with anti-TNF-a agents (Wijbrandts et al., 2009). Therapy 
with IFX has been shown to improve HDL antioxidative capacity, while stable increases of 
PON-1 activities were observed throughout the same period (Popa et al., 2009). In contrast, 
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other studies show a modest effect on TC and HDL-C levels in RA patients (Kiortsis et al., 
2006) even when using a combination of anti-TNF-a, csDMARDs, and steroids (van Sijl et al., 
2011). Results on qualitative lipid changes (structure and function) may be more relevant to 
their presumed vascular benefits, a theory that requires further study.

Anti-interleukin-6 (IL-6) agents

TCZ is a humanized anti-IL-6-receptor monoclonal antibody that inhibits IL-6 signaling 
and presents a good efficacy and safety profile in RA treatment (Markatseli et  al., 2019). 
Regarding its impact on lipid profile, a decrease of LDL-receptor expression after treatment 
with TCZ has been reported (Strang et al., 2013). Modification of lipoprotein composition has 
been observed due to reducing the secretory phospholipase A2 and serum alpha-amyloid 
levels (McInnes et al., 2015). Kawashiri et al. (2011) have shown an elevation in serum levels 
of TC, HDL-C, LDL-C, Apo A-1, and Apo A-2 after 3 months of treatment with TCZ, while the 
researchers didn’t observe any significant change in Apo B, the atherogenic index, and TC/
HDL-C by the TCZ treatment. Several other trials have reported the same results on serum 
TC, HDL-C, and TGs levels (Cacciapaglia et al., 2018). TCZ, when compared with placebo, 
has also induced elevations in LDL-C and alteration of HDL to an anti-inflammatory compo-
sition (Pierini et al., 2021). Still, these observations require further investigation.

Janus kinase inhibitors (JAK inhibitors)

JAK inhibitors target the intracellular kinase JAK and block the JAK-STAT signaling path-
way, which influences the response to many cytokines. Since their release, they quickly became 
a promising class of oral therapeutics that proved effective in treating RA. Regarding JAK 
inhibitors’ effect on lipids, it is proposed that increased cholesterol levels relate to the reduc-
tion of cholesterol ester FCR after JAK inhibitor treatment in RA patients (Venetsanopoulou, 
Pelechas, et al., 2020). In a double-blind, placebo-controlled, parallel-group phase III trial of 
tofacitinib, which is a dual JAK1–JAK3 inhibitor, there was an increase in HDL-C and LDL-C 
levels of about 14% and 21%, respectively, within a year of treatment (Fleischmann et al., 2012). 
The LDL-C and HDL-C levels were also found to be significantly elevated with tofacitinib 
administration in a phase III trial, compared to ADA at 3 months. These increases were much 
higher than those seen after treatment with anti-TNF-a agents (van Vollenhoven et al., 2012).

Other agents

Rituximab (RTX) is a chimeric, murine-human monoclonal antibody directed against the 
B-lymphocyte-specific antigen CD20 on the surface. It induces rapid and sustained deple-
tion of peripheral B‐cells (Edwards et al., 2004). Since 2006, RTX has been approved for use 
in patients with moderate-to-severe RA refractory to DMARDs or anti-TNF-a agents. After 
treatment with the standard approved dosage (two infusions 1 g given 2 weeks apart), most 
individuals achieve a significant improvement in RA disease activity (Cohen et al., 2006).
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Some studies demonstrate a reduction in TC and an increase in HDL-C levels after RTX, 
by 11% and up to 35%, respectively. However, a study that included 33 RA patients, who 
previously did nonrespond to anti-TNF-a treatment, showed that treatment with RTX did 
not improve the arterial stiffness, atherogenicity index, or LDL-C (Mathieu, Pereira, Dubost, 
Lusson, & Soubrier, 2012). Future investigations may clarify the exact effects of RTX on CV 
risk factors in RA patients.

The overall effect of RA treatment on CVD risk is shown in Fig. 5.
Statins are commonly prescribed both for primary and secondary prevention of CHD. 

They induce a wide range of changes in lipid profile, including reduction of TC, LDL-C, and 
of TG (albeit, at a lesser degree) while increasing HDL-C levels. Statins reduce cholesterol 
biosynthesis by acting mainly in the liver where they exert modulation of lipid metabolism, 
derived from their effect of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (Stancu 
& Sima, 2001). Statin treatment initiation is associated with a lower risk of mortality among 
RA patients, similar to the general population (Schoenfeld et al., 2016). Statins should be used 
for primary prevention in RA patients according to national recommendations and risk as-
sessment tools (Kitas et al., 2019).

FIG. 5 Schematic representation of RA treatment and its effect on CVD risk. The treat-to-target approach with 
GCs, cDMARDs, and bDMARDs leads to remission or low disease activity (1) and may reduce CVD (2). MTX use 
has a dual effect on CVD risk through its impact on disease activity (1,2) and its ability to promote reverse cholesterol 
transport (3). Anti-TNF-a therapy also improves insulin resistance with a further reduction of CVD risk (4). HCQ has 
a beneficial effect on atherogenic lipid profile (4) alongside improving synovitis (1). Anti-TNF-a, antitumor necrosis 
factor-alpha; CVD, cardiovascular disease; DMARD, disease-modifying antirheumatic drug; csDMARDs, conven-
tional synthetic DMARDs; MTX, methotrexate; RA, rheumatoid arthritis; tsDMARDs, targeted synthetic DMARDs.
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Mediterranean diet and RA

Mediterranean diet is based on the eating habits of Greece, Italy, and Spain in the 1960s. It 
emphasizes consuming vegetables, fruits, grains, fish, and unsaturated fats such as olive oil, 
while it includes less dairy and meat when compared to a typical Western diet.

In RA, studies reveal a beneficial effect of the Mediterranean diet in reducing pain 
and increasing patients’ physical function (Forsyth et  al., 2018; Sköldstam, Hagfors, & 
Johansson, 2003; Vranou et al., 2020), while some researchers have related adherence to the 
Mediterranean diet with a possible reduction of the high risk of RA among ever- smoking 
women (Nguyen et  al., 2021). Extra virgin olive oil significantly reduces the levels of 
 pro-inflammatory cytokines and prostaglandin E2 in the joint of collagen-induced arthri-
tis model mice in the joint, leading to a downregulation of the arthritic process (Rosillo 
et al., 2014). In humans, a recent study showed that high adherence to the Mediterranean 
diet related to lower disease activity and a healthier gut microbiota composition, with a 
significant decrease in Lactobacillaceae and an almost complete absence of Prevotella copri 
(Picchianti Diamanti et al., 2020).

Several studies have advanced the beneficial role of the Mediterranean diet in controlling 
the main risk factors for the development of arteriosclerosis through the downregulation of 
cellular and inflammatory biomarkers related to atherogenesis (Estruch, 2010). Olive oil con-
sumption, which is a key component of the Mediterranean diet, has been shown to decrease 
the plasmatic levels of LDL-C and increases those of HDL-C (Alarcón de la Lastra, Barranco, 
Motilva, & Herrerías, 2001). Other diet patterns or even fasting mimicking diets may also 
suppress the inflammatory process (Venetsanopoulou, Voulgari, & Drosos, 2020), but their 
impact on CVD risk needs further investigation.

The role of exercise in RA

Exercise and quality of life are closely linked together. Studies have shown that exercise 
optimizes physical and mental health in patients with long-term illnesses. Exercise directly 
increases strength, balance, and flexibility. Also, it has excellent physical benefits such as 
improving cardiovascular endurance, reducing high blood pressure, increasing HDL-C, 
maximizing bone density, and helping weight management. People who do not exercise 
may experience more fatigue and pain because a lack of movement leads to decreased joint 
motion, stiffness, and muscle weakness. Studies indicate that in RA patients, exercise is 
safe and improves their quality of life, functionality, pain, and number of swollen joints 
(Hernández-Hernández & Díaz-González, 2017). Individualized aerobic and resistance ex-
ercise for muscle strength is recommended as a routine practice. Moreover, in older RA  
patients (ages 65–75 years), it has been shown to improve physical fitness in terms of aerobic 
capacity, endurance, and strength (Hurkmans, van der Giesen, Vliet Vlieland, Schoones, & 
Van den Ende, 2009; Lange et al., 2019). This type of physical intervention can significantly 
improve low cardiorespiratory fitness, a significant predictor of CVD in RA (Stavropoulos-
Kalinoglou et al., 2013). Studies also indicate that exercise in RA patients is associated with 
a more protective CV risk factor profile: lower waist-hip ratio, higher HDL particle con-
centration, lower vascular stiffness, and a lower prevalence of hypertension (Byram et al., 
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2018). The impact of several different kinds of exercise has been studied: Tai chi, a non-
competitive, self-paced physical exercise and stretching, has shown to improve endothelial 
dysfunction and arterial stiffness in older women with RA (Shin et al., 2015). Thus, exercise 
should be an integral part of treating RA patients.

Conclusions

The relationship between dyslipidemia in patients with RA, inflammatory pathways, and 
atherosclerosis is complex. The altered lipid profile in RA is paradoxical to the general pop-
ulation in patients with active disease and is characterized by low TC, LDL-C, and HDL-C 
levels. Studies have identified that inflammation is indeed the key player to many of RA’s 
lipid changes. Thus, RA patients’ treatment to decrease the risk of hyperlipidemia as a cardio-
vascular risk factor is still necessary disregarding their paradoxical lipid profile. Moreover, a 
treat to target approach with csDMARDs and or ts/bDMARDs leading to low disease activity 
or disease remission is mandatory. Still, future investigation is required and could lead to a 
better stratification of CVD risk in RA beyond the established risk factors.
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